LuANS
S"é‘&b(K

row-ociented ve

column-oriented

Some SQL databases are row-oriented and some are

column-oriented (aka "columnar")

row-orien+ed

column-ocriented

G.Qe name
(2 [bob [d [shir | 9 |akshey |
___—1\"

a tou's values are

stoced +09e+|'\ef on disk

Examples:

PosfsreSQL, MysQL, SQlite,
SQL Server

Mainly vsed for:
records that vsers need
to look up/change all the time
(63 a web service)

Pros:
—+ easy to look up or uvpdate a
sinS(e row (it's in one place!)

Cons:
"b'j expensive queries make

3

our website less responsive

Vou have 1o be super
ca(e-ru cbout which

quenes oY run On

Your produc_‘\wn dot o base?

G.ge. hamé
\Ei/j_L ‘—\;;b shic | akshay

& column’s values ace

stored +oae+ he~

Presh: is open source,
t+he others aren't

Examples: o
Redshift, Presto, BlsQuerg,

Vertica, Snowflake

Mainly used for:
data analysis ("run this huge
query on a billion rows")

T 9 99 using +heseﬁ

for b.3 gomphaxfed queries,
'H\eg can aggreqeie &

billion rowus 1n o few
seconds sometimes ¥

—» quer'jinﬂ all data in a column

Pros:

to do analysis is way faster
-+ usually distribute data acrose

many machines so 1000

machines can run your query

Cons:

—» SELECT * can be SUPER SLOW
if you have 100 columns
(avoid doinj it!)

o Updafins a row is slow
(do batch imports instead)

@ b0 \h]C11f5f5, '1FC> C:C)LJVW‘}—

Here are three ways to count rows:

(D cOUNT (*): count all rows

This counts every row, reaardless of the values in the row.
Often vsed with a GROUP BY to Se’r common valves, like in
this "“top 50 baby names" query:

SELECT name, COUNT (%)
FROM baby_names

GROUP BY name

ORDER BY COUNT(*) DESC
LIMIT 50

() COUNT (DISTINCT column):gef the number of distinct values

Really useful when a column has duplicate valves.
For example, this query finds out how many species every
animal genus has:

SELECT genus, COUNT(DISTINCT species)
FROM all_animals
GROUP BY 1 ORDER BY 2 DESC

(3) SUM(CASE WHEN expression THEN 1 ELSE 0 END)

Want to Know many doss are named 'boxer'? You can use
SUM and CASE WHEN to count them!

Y¥¢*° SELECT owner
s 'Upm“’} SUM(CASE WHEN type = 'dog’ then 1 else @ end) AS num_dogs
¢ sape;o; , SUM(CASE WHEN type = 'cat’ then 1 else @ end) AS num_cats
ﬂ5¢*$wﬁ, SUM(CASE WHEN type NOT IN ('dog', 'cat) then 1 else 0@
o9 end) AS num_other
FROM pets GROUP BY 1

owner type owner num_dogs num_cats num_other
1 dog __> 1 1 1 0

1 cat 2 2 1 0 1

2 dog

2 parakeet

@®

S B ques’rions To ask
obout your datox

It's really easy to make incorrect assumptions about

the data in a table:
2 hours later...

o0

02

every hospita |
Pach‘en‘f has q
doctor right?

""kS is everyone

—F(am MG\.S 20'.&
missing o doctocr 7?7

Some ques’rions you mighf want to ask:

Does this column have NULL or 0 or " values?

°°

Some Pa‘]'ien’fs have NULL

names +hat's good to
Kr\ow

How many different values does this column have?

°°°Chuh there are 23000 extro

dod‘a(s in the Sysfem who never
Worked ot this hospital, I should

i H er *H\em out

Are there duplicate values in this column?

;

Does the id column in table A a(wajs have a match in table B?

?

sometimes there ace 2 docto's
ﬁppoir\‘l’mm"S ot +he exect time,
+hat shouldn't happen...

Nk% are thece 213 doctor IDs ith
ho match ian the QJoctors +able 77

SQL query steps

When this SQL query runs, here's how 1 think of what happens:
every line in the cluer:j changes a table into another table

SELECT owner, count(*)

@ \WHERE owner '=3

S
| FROM cats
2 WHERE owner != 3
3 GROUP BY owner
4 HAVING count(*) = 2
6 ORDER BY owner DESC
(D FROM cots
owner | name
1 libra
2 cinnamon
2 chanceuse
3 astra
4 lime
4 nikola

(@ GROULP BY owner

owner

name

| 1 libra)

[ﬁ cinnamonﬁ
chance

4 lime
4 niko

1o

@ QELECT owner, count (%)

owner | count(*)

- 2 2
-4 2

owner | name
i | libra
2 cinnamon
2 chanceuse i
Al astra }f\:&: fl
4 lime
4 nikola

@ HAVING countls) =2

owner | name
[f cinnamBE;X
2 chanceus
4 ime
[;_—_ nikola

owner‘ count (*)
soct| 4 2
l 2 2

’SUUA EVANS

e®®™® how LEFT JOIN works

Let's run this join:
cats LEFT JOIN people ON owner_id = id

Here are the 2 tables:

cats pecple
owner_id name id name
1 bella 1 juan
2 luna 2 ahmed
5 lime 4 ryan
@ Combine every cats row Find rouws where the
with every people FOW ON condilion 15
rve
cats. People. ‘+ .
owner_id| name id | name ouner_nd: |d
1 bella | 1 juan
1 bella | 2 ahmed _, cots. . people.
1 bella | 4 ryan owner_id | name | id |r}ame
2 LinG 1 juan \ 1 |be11a 1 | juan
5 Feivegmmi[i= ahmed}‘/ meeoop luna | 2 | ahmed
2 luna 4 ryan
3 lime 1 juan
3 lime 2 ahmed
3 lime 4 ryan

®? Add any Missing (ous from +he lef+ +able (cots)

cots) cats. Pf’op" people.
owner_id [name id | name
1 bella (1 | juan Fimésns e
1 (W] misSSing S6
é 1\9nae r\2luu, a:s‘gii 42 M8 80 W back £
'm pu+‘ NULLs for +he

people columns

S"EP 2 ceems weird ot
Firsk bot it really vsefol

+o knowv which rows had
no match! LEFT JOIN is
My favourite

Find duplicate emails with HAVING

This query finds duplicate email addresses in a clients table:

SELECT email, count(*), group_concat(name, ',') AS names
FROM clients

GROUP BY email

HAVING count(*) > 1

Here's how it breaks down:

(1) FROM clients (2) GROUP BY email

id name email | id name email |
1 mrdarcy darcy@pemberiey.com ‘1 mr darcy darcy@pembeney.com|
2 luna luna@mice.com \ I
3 nala me@cartoon.com ST o

4 tigger me@cartoon.com 2 luna luna@mice.com

|' id name email |

3 nala me@cartoon.com

4 tigger me@cartoon.com |

(3) SELECT email, count(*), (4) HAVING count(*) > 1
group_concat(name, ',') AS ool counk(") names
names me@cartoon.com 2 nala,tigger
email count(*) names

darcy@pemberiey.com 1 mr darcy

luna@mice.com 1 luna

me@cartoon.com 2 nala,tigger

A simple LEFT JOIN

Here's a join query to figure out which treats Luna bought

SELECT clients.name AS client_name,

FROM sales

LEFT JOIN clients ON sales.client_id

WHERE clients.name = 'luna'

Let's go through that query one step at a time

(1) FROM sales
client_id item

1 catnip

1 blanket

1 tuna

2 tuna

S laser pointer

(3) LEFT JOIN clients ON
sales.client_id = clients.id

Sales data on the left, clients on the right

client_id item d name email
. mr

1 catnip 1 darcy darcy@pemberiey.com

1 blanket 1 M darcy@pemberley.com
darcy Pe ¥

1 tuna 1 mr darcy@pemberley.com
darcy pe ¥

2 tuna 2 luna luna@mice.com

5 BSer \ULL NULL NULL

pointer

(5) SELECT cats.name AS

sales.item

clients.id

(2) LEFT JOIN clients

Here's the clients table:

id name email

1 mrdarcy darcy@pemberiey.com

2 luna luna@mice.com
3 nala me@cartoon.com
4 tigger me@cartoon.com

(4) WHERE clients.name = 'luna'

client_id item id name email

2 tuna 2 Iluna Iluna@mice.com

Get the time between thunderstorms with LAG()

Window functions let you reference values in other rows, like the previous row! This means you can
subtract the day in the previous row to get the time between thunderstorms.

SELECT type, day, day - lag(day) OVER(PARTITION BY type
ORDER BY day ASC) as days_since_prev

FROM weather

ORDER BY day ASC

Let’s go through that query one step at a time:

(1) FROM weather (2) PARTITION BY type

ope day type day

rain K rain 9

thunderstorm 11 min 13

rain 13 rain 21

rain 21 rain 30

thunderstorm 22 rain 38

rain 30 rain 48

thunderstorm 36))

rain 38 type day

thunderstorm 41 thunderstorm 11

rain 48 thunderstorm 22
thunderstorm 36
‘thundetstonn 41 |

(3) ORDER BY day ASC (4) SELECT type, day, day -

In this case the rows already look ordered, but lag(daY) OVER(PARTITION BY
you should always use an ORDER BY if you type ORDER BY day ASC) as
expect a specific order days_since_prev

type day

rain 9 type day days_since_prev
rain 13 rain 9

rain 21 rain 13 4

rain 30 rain 21 8

rain 38 rain 30 9

rain 48 rain 38 8

. . rain 48 10

type day

thunderstorm 11

thunderstorm 22 11
thunderstorm 36 14
thunderstorm 41 5

thunderstorm 11
thunderstorm 22
thunderstorm 36

| thunderstorm 41 |

’Socté\‘:)(;\:ﬁ omod‘onmj 04: Q
SQL query

Every sQL database contains a bunch of tables

Sakes clients cities
NGme P"P"{""f""‘ mayor

id____

cient| item

.- . —

- -
- - - ™~

Ak

- -

R— P e
—
—

-

-
- - o -~

Every SELECT query takes data from those tables and

LEC-T CO[UM"\
A SFEQOM soble
SELECT < yrsnyons o ine simplest”
requiced EROM ... quersy 120 can
INNER TSOIN... il
WHERE ...
GROWP RY ...
oP‘riono.\ HAVING ...
ORDER RBY ...
LIMIT ...

3enerafes a new table

A few basic facts to start ovut:

— You a(wags need to vse the order SELECT ... FROM ...
WHERE ... GROUP BY
-+ SQL ien't case sensitive: select * from table is fine too

G* thece. are other kinds of
queries like TINSERT /UPDATE /DELETE

but 4his zine is 3us+ obovt SELECT

S ok WHERE

WHERE filters the table you start with.
For example, let's break down this simple query:

FROM cats
WHERE name 1S NULL

[EROM cats| [WHERE name TS NULL

owner | name |
: wner | nam wner
1 | simba s owne ame Oper

5 bella 3 |NULL 3

3 NULL/J L ’

What you can put in a WHERE:

DGO ED

Check if a string These work the way
contains a substring! Yyou'd guess
WHERE name LIKE '%darcy%’ WHERE revenue - costs >= 0

% is o u:\Jca(cJ

Check if an expression is

in a list of valves
WHERE name IN ('bella’, ’'simba’)

You can AND fogefher as man3 conditions as you want

IF I'm vsing pu+' oll the ORs
of ANDs T |; ke +o AND (..... in the brackets
weite them like thisy™ yyp oo

expl 1S NULL
expr S NOT NULL

= NULL doesn't work, you
need to use IS NULL

Swe e rules for Simp\e SOINs

Joins in SQL let you take 2 tables and combine them into one.
blc| O blcidIx]y |2

pe ~\~ |~

~ A~ ~
~\~ P—

~ —~
| —

2
TNNER SOIN f,im =S

~

P

~
~
~| ~\~
P~

~

~

i~
~
o~
~

YRR

‘A-lh o~ | —)

Joins can get really complicated, so we'll start with the simplest
way to join. Here are the rules 1 use for 40% of my joins:

Rule 1: only vse LEFT JOIN and INNER JOIN

This is every join type:

‘ .
INNER JOIN | T 29 Juitjffa
LEFT JOIN these Fuo
RIGHT JOIN

FULL OUTER JOIN
CROSS JOIN

Rule 2: On(j include 1 condition in Your J'oin

Here's the syntax for a join:
tablel LEFT JOIN table2 ON <arbitrary boolean condition>

I vsually stick to a very simple condition, like this:

tablel LEFT JOIN table2
ON tablel.some_column = table2.other_column

Rule 3: One of the joined columns should be unique

If neither of the columns is Unique, you'll 36"’ sfranﬂe
results like this:

e

peop\e INNER TSOIN +oods

eople
nanﬁe | age INNER foods . ON people.name:‘FooAs. name
e ame | favourite food me | f ite food |
J.Ul}a |19 JolN julia | bananas = | DA bl 3ge
julia | 18 julia | bananas | 19

Uit Lskerchig julia | ketchup | 19177

' julia | bananas | 18
| julia | ketchup 118) |

kevin | 16

Son B QELECT

SELECT is where you pick the final columns that appear in
output of the query. Here's the syntax:

SELECT expression_1 [AS alias],
expression_2 [AS alias2],

FROM ...

Some useful fhinss to Know about SELECT:

@You can combine many columns with SQL expressions
A few examples:
CONCAT(first_name, ' ', last_name)

MAX(last_year_profit, this_year_profi

t
DATE_TRUNC('month', created)e— +his is g°S*'£3 (eSQL syntax for
rounding a date other SQL

diolects have diffecent syntax

@ Alias an expression with AS

CONCAT (first_name, ' ', last name) is a mouthful!
It's nice to give your complicated expressions an
easy-to-read alias, like:

SELECT CONCAT(first_name, ' ', last_name) AS full_name

@ Select all columns with SELECT *

When I'm sfar'rins to fiﬁurc out a query, I'll often write
somefhins like

SELECT * from some_table LIMIT 10
jusf to quick(j see what the columns in the table ook like

SELECT count(#) and SELECT %X are
Yotally diffecent, covat(£) means ™ couat all rows”
which isn'f realld related to SELECT kK

ORDER BY and LW\\T \a

ORDER BY and LIMIT happen at the end and affect the
final output of the query.

ORDER BY lets You sort b3 angfhins Yyou want!

The syntax: stands for
A SC ascenbins
ORDER BY Cexpression)
D ES &
Example:
Ty rRo e)
///////,’\ ORDER BY LENGTH(name) ASC }
cats X
owner| name owner| name
1 daisy 4 rose
1| dRAZRNSDAR 1 | daisy
3 buttercup 3 buttercup
4 rose 1| dRAZRIS0AR

LIMIT lets you limit the number of rows output.

The syntax:
€= must be a

K~ number

LPIT 2

s —————— - ————

£ * FROM cats X
| ORDER BY LENGTH(name) ASC |
\ LIMIT 2 !
cats T TTTTTTTTTTTTTTTmmTTIes—=T
owner | name
1 daisy owner | name

1| srageosoan s |k
3 buttercup alsy
4 rose

